The Ongoing Story of Gomory Cuts
نویسنده
چکیده
The story of Gomory cuts is characterized by swings between great acclaim in the early days, near oblivion for decades and an amazing come back in the last 20 years. These cuts have been described as “elegant”, “disappointing” and “the clear winner” at various times over the last 55 years. This essay retraces that roller coaster. Ralph Gomory’s paper “Early Integer Programming” recounts his discovery of fractional cuts. It is a few years after he wrote his doctoral dissertation on nonlinear differential equations that he heard of linear programming for the first time. He was working for the Navy at the time. In one particular instance, it would have been preferable to have solutions in integers. Gomory thought that, somehow, one should be able to accomplish this. Within a few days he had invented fractional cuts. His approach was to first solve the linear program and then, using appropriate integer linear forms, to generate valid linear inequalities cutting off the undesirable fractional solution. By adding these cuts to the linear program, solving again using the simplex algorithm and iterating, Gomory could solve by hand any small integer linear program that he tried. However, he did not have a finiteness proof yet. At this point, he happened to run into Martin Beale in the halls of Princeton University in late 1957 and mentioned that he could solve linear programs in integers. When Beale immediately responded “but that’s impossible”, Gomory realized that he was not the first to think about this problem. As it turns out, Dantzig, Fulkerson, and Johnson had pioneered the cutting plane approach in a seminal paper published in 1954. They devised special-purpose cuts for the traveling salesman problem and, as a result, were able to solve to optimality an instance with 48 cities. However, Gomory’s goal was different and more ambitious. His fractional cuts were general-purpose cuts that applied to all integer linear programs. In his reminiscences “Early Integer Programming”, Gomory recounts the excitement that followed his encounter with Beale.
منابع مشابه
Strengthening Chvátal-Gomory cuts and Gomory fractional cuts
Chvátal-Gomory and Gomory fractional cuts are well-known cutting planes for pure integer programming problems. Various methods for strengthening them are known, for example based on subadditive functions or disjunctive techniques. We present a new and surprisingly simple strengthening procedure, discuss its properties, and present some computational results.
متن کاملDeciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point
Gomory-Chvátal cuts are prominent in integer programming. The Gomory-Chvátal closure of a polyhedron is the intersection of all half spaces defined by its Gomory-Chvátal cuts. In this paper, we show that it is NP-complete to decide whether the Gomory-Chvátal closure of a rational polyhedron is empty, even when this polyhedron contains no integer point. This implies that the problem of deciding ...
متن کاملStrengthening Gomory Mixed-Integer Cuts: A Computational Study
Gomory mixed-integer cuts are an important ingredient in state-ofthe-art software for solving mixed-integer linear programs. In particular, much attention has been paid to the strengthening of these cuts. In this paper, we give an overview of existing approaches for improving the performance of Gomory mixed-integer cuts. More precisely, we consider k-cuts, combined Gomory mixed-integer cuts, re...
متن کاملCutting Planes for Mixed Integer Programming
The purpose of this paper is to present an overview of families of cutting planes for mixed integer programming problems. We examine the families of disjunctive inequalities, split cuts, mixed integer rounding inequalities, mixed integer Gomory cuts, intersection cuts, lift-and-project cuts, and reduceand-split cuts. In practice, mixed integer Gomory cuts are very useful in obtaining solutions ...
متن کاملCORC Technical Report TR-2001-03 Cuts for mixed 0-1 conic programming
In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show t...
متن کامل